# Module `Stdlib`

The OCaml Standard library.

This module is automatically opened at the beginning of each compilation. All components of this module can therefore be referred by their short name, without prefixing them by `Stdlib`

.

`module Pervasives : sig ... end`

`include module type of sig ... end`

`exception`

`Exit`

The

`Exit`

exception is not raised by any library function. It is provided for use in your programs.

`val (=) : 'a -> 'a -> bool`

`e1 = e2`

tests for structural equality of`e1`

and`e2`

. Mutable structures (e.g. references and arrays) are equal if and only if their current contents are structurally equal, even if the two mutable objects are not the same physical object. Equality between functional values raises`Invalid_argument`

. Equality between cyclic data structures may not terminate. Left-associative operator at precedence level 4/11.

`val (<>) : 'a -> 'a -> bool`

Negation of

`Pervasives`

.( = ). Left-associative operator at precedence level 4/11.

`val (<) : 'a -> 'a -> bool`

See

`Pervasives`

.( >= ). Left-associative operator at precedence level 4/11.

`val (>) : 'a -> 'a -> bool`

See

`Pervasives`

.( >= ). Left-associative operator at precedence level 4/11.

`val (<=) : 'a -> 'a -> bool`

See

`Pervasives`

.( >= ). Left-associative operator at precedence level 4/11.

`val (>=) : 'a -> 'a -> bool`

Structural ordering functions. These functions coincide with the usual orderings over integers, characters, strings, byte sequences and floating-point numbers, and extend them to a total ordering over all types. The ordering is compatible with

`( = )`

. As in the case of`( = )`

, mutable structures are compared by contents. Comparison between functional values raises`Invalid_argument`

. Comparison between cyclic structures may not terminate. Left-associative operator at precedence level 4/11.

`val compare : 'a -> 'a -> int`

`compare x y`

returns`0`

if`x`

is equal to`y`

, a negative integer if`x`

is less than`y`

, and a positive integer if`x`

is greater than`y`

. The ordering implemented by`compare`

is compatible with the comparison predicates`=`

,`<`

and`>`

defined above, with one difference on the treatment of the float value`Pervasives.nan`

. Namely, the comparison predicates treat`nan`

as different from any other float value, including itself; while`compare`

treats`nan`

as equal to itself and less than any other float value. This treatment of`nan`

ensures that`compare`

defines a total ordering relation.`compare`

applied to functional values may raise`Invalid_argument`

.`compare`

applied to cyclic structures may not terminate.The

`compare`

function can be used as the comparison function required by the`Set.Make`

and`Map.Make`

functors, as well as the`List.sort`

and`Array.sort`

functions.

`val min : 'a -> 'a -> 'a`

Return the smaller of the two arguments. The result is unspecified if one of the arguments contains the float value

`nan`

.

`val max : 'a -> 'a -> 'a`

Return the greater of the two arguments. The result is unspecified if one of the arguments contains the float value

`nan`

.

`val (==) : 'a -> 'a -> bool`

`e1 == e2`

tests for physical equality of`e1`

and`e2`

. On mutable types such as references, arrays, byte sequences, records with mutable fields and objects with mutable instance variables,`e1 == e2`

is true if and only if physical modification of`e1`

also affects`e2`

. On non-mutable types, the behavior of`( == )`

is implementation-dependent; however, it is guaranteed that`e1 == e2`

implies`compare e1 e2 = 0`

. Left-associative operator at precedence level 4/11.

`val (!=) : 'a -> 'a -> bool`

Negation of

`Pervasives`

.( == ). Left-associative operator at precedence level 4/11.

`val (&&) : bool -> bool -> bool`

The boolean 'and'. Evaluation is sequential, left-to-right: in

`e1 && e2`

,`e1`

is evaluated first, and if it returns`false`

,`e2`

is not evaluated at all. Right-associative operator at precedence level 3/11.

`val (&) : bool -> bool -> bool`

- deprecated
`Pervasives`

.( && ) should be used instead. Right-associative operator at precedence level 3/11.

`val (||) : bool -> bool -> bool`

The boolean 'or'. Evaluation is sequential, left-to-right: in

`e1 || e2`

,`e1`

is evaluated first, and if it returns`true`

,`e2`

is not evaluated at all. Right-associative operator at precedence level 2/11.

`val or : bool -> bool -> bool`

- deprecated
`Pervasives`

.( || ) should be used instead. Right-associative operator at precedence level 2/11.

`val __LOC__ : string`

`__LOC__`

returns the location at which this expression appears in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d".- since
- 4.02.0

`val __FILE__ : string`

`__FILE__`

returns the name of the file currently being parsed by the compiler.- since
- 4.02.0

`val __LINE__ : int`

`__LINE__`

returns the line number at which this expression appears in the file currently being parsed by the compiler.- since
- 4.02.0

`val __MODULE__ : string`

`__MODULE__`

returns the module name of the file being parsed by the compiler.- since
- 4.02.0

`val __POS__ : string * int * int * int`

`__POS__`

returns a tuple`(file,lnum,cnum,enum)`

, corresponding to the location at which this expression appears in the file currently being parsed by the compiler.`file`

is the current filename,`lnum`

the line number,`cnum`

the character position in the line and`enum`

the last character position in the line.- since
- 4.02.0

`val __LOC_OF__ : 'a -> string * 'a`

`__LOC_OF__ expr`

returns a pair`(loc, expr)`

where`loc`

is the location of`expr`

in the file currently being parsed by the compiler, with the standard error format of OCaml: "File %S, line %d, characters %d-%d".- since
- 4.02.0

`val __LINE_OF__ : 'a -> int * 'a`

`__LINE_OF__ expr`

returns a pair`(line, expr)`

, where`line`

is the line number at which the expression`expr`

appears in the file currently being parsed by the compiler.- since
- 4.02.0

`val __POS_OF__ : 'a -> (string * int * int * int) * 'a`

`__POS_OF__ expr`

returns a pair`(loc,expr)`

, where`loc`

is a tuple`(file,lnum,cnum,enum)`

corresponding to the location at which the expression`expr`

appears in the file currently being parsed by the compiler.`file`

is the current filename,`lnum`

the line number,`cnum`

the character position in the line and`enum`

the last character position in the line.- since
- 4.02.0

`val (|>) : 'a -> ('a -> 'b) -> 'b`

Reverse-application operator:

`x |> f |> g`

is exactly equivalent to`g (f (x))`

. Left-associative operator at precedence level 4/11.- since
- 4.01

`val (@@) : ('a -> 'b) -> 'a -> 'b`

Application operator:

`g @@ f @@ x`

is exactly equivalent to`g (f (x))`

. Right-associative operator at precedence level 5/11.- since
- 4.01

`val (~-) : int -> int`

Unary negation. You can also write

`- e`

instead of`~- e`

. Unary operator at precedence level 9/11 for`- e`

and 11/11 for`~- e`

.

`val (~+) : int -> int`

Unary addition. You can also write

`+ e`

instead of`~+ e`

. Unary operator at precedence level 9/11 for`+ e`

and 11/11 for`~+ e`

.- since
- 3.12.0

`val (*) : int -> int -> int`

Integer multiplication. Left-associative operator at precedence level 7/11.

`val (/) : int -> int -> int`

Integer division. Raise

`Division_by_zero`

if the second argument is 0. Integer division rounds the real quotient of its arguments towards zero. More precisely, if`x >= 0`

and`y > 0`

,`x / y`

is the greatest integer less than or equal to the real quotient of`x`

by`y`

. Moreover,`(- x) / y = x / (- y) = - (x / y)`

. Left-associative operator at precedence level 7/11.

`val (mod) : int -> int -> int`

Integer remainder. If

`y`

is not zero, the result of`x mod y`

satisfies the following properties:`x = (x / y) * y + x mod y`

and`abs(x mod y) <= abs(y) - 1`

. If`y = 0`

,`x mod y`

raises`Division_by_zero`

. Note that`x mod y`

is negative only if`x < 0`

. Raise`Division_by_zero`

if`y`

is zero. Left-associative operator at precedence level 7/11.

`val abs : int -> int`

Return the absolute value of the argument. Note that this may be negative if the argument is

`min_int`

.

`val (land) : int -> int -> int`

Bitwise logical and. Left-associative operator at precedence level 7/11.

`val (lor) : int -> int -> int`

Bitwise logical or. Left-associative operator at precedence level 7/11.

`val (lxor) : int -> int -> int`

Bitwise logical exclusive or. Left-associative operator at precedence level 7/11.

`val (lsl) : int -> int -> int`

`n lsl m`

shifts`n`

to the left by`m`

bits. The result is unspecified if`m < 0`

or`m > Sys.int_size`

. Right-associative operator at precedence level 8/11.

`val (lsr) : int -> int -> int`

`n lsr m`

shifts`n`

to the right by`m`

bits. This is a logical shift: zeroes are inserted regardless of the sign of`n`

. The result is unspecified if`m < 0`

or`m > Sys.int_size`

. Right-associative operator at precedence level 8/11.

`val (asr) : int -> int -> int`

`n asr m`

shifts`n`

to the right by`m`

bits. This is an arithmetic shift: the sign bit of`n`

is replicated. The result is unspecified if`m < 0`

or`m > Sys.int_size`

. Right-associative operator at precedence level 8/11.

`val (~-.) : float -> float`

Unary negation. You can also write

`-. e`

instead of`~-. e`

. Unary operator at precedence level 9/11 for`-. e`

and 11/11 for`~-. e`

.

`val (~+.) : float -> float`

Unary addition. You can also write

`+. e`

instead of`~+. e`

. Unary operator at precedence level 9/11 for`+. e`

and 11/11 for`~+. e`

.- since
- 3.12.0

`val (+.) : float -> float -> float`

Floating-point addition. Left-associative operator at precedence level 6/11.

`val (-.) : float -> float -> float`

Floating-point subtraction. Left-associative operator at precedence level 6/11.

`val (*.) : float -> float -> float`

Floating-point multiplication. Left-associative operator at precedence level 7/11.

`val (/.) : float -> float -> float`

Floating-point division. Left-associative operator at precedence level 7/11.

`val (**) : float -> float -> float`

Exponentiation. Right-associative operator at precedence level 8/11.

`val expm1 : float -> float`

`expm1 x`

computes`exp x -. 1.0`

, giving numerically-accurate results even if`x`

is close to`0.0`

.- since
- 3.12.0

`val log1p : float -> float`

`log1p x`

computes`log(1.0 +. x)`

(natural logarithm), giving numerically-accurate results even if`x`

is close to`0.0`

.- since
- 3.12.0

`val acos : float -> float`

Arc cosine. The argument must fall within the range

`[-1.0, 1.0]`

. Result is in radians and is between`0.0`

and`pi`

.

`val asin : float -> float`

Arc sine. The argument must fall within the range

`[-1.0, 1.0]`

. Result is in radians and is between`-pi/2`

and`pi/2`

.

`val atan2 : float -> float -> float`

`atan2 y x`

returns the arc tangent of`y /. x`

. The signs of`x`

and`y`

are used to determine the quadrant of the result. Result is in radians and is between`-pi`

and`pi`

.

`val hypot : float -> float -> float`

`hypot x y`

returns`sqrt(x *. x + y *. y)`

, that is, the length of the hypotenuse of a right-angled triangle with sides of length`x`

and`y`

, or, equivalently, the distance of the point`(x,y)`

to origin. If one of`x`

or`y`

is infinite, returns`infinity`

even if the other is`nan`

.- since
- 4.00.0

`val ceil : float -> float`

Round above to an integer value.

`ceil f`

returns the least integer value greater than or equal to`f`

. The result is returned as a float.

`val floor : float -> float`

Round below to an integer value.

`floor f`

returns the greatest integer value less than or equal to`f`

. The result is returned as a float.

`val copysign : float -> float -> float`

`copysign x y`

returns a float whose absolute value is that of`x`

and whose sign is that of`y`

. If`x`

is`nan`

, returns`nan`

. If`y`

is`nan`

, returns either`x`

or`-. x`

, but it is not specified which.- since
- 4.00.0

`val mod_float : float -> float -> float`

`mod_float a b`

returns the remainder of`a`

with respect to`b`

. The returned value is`a -. n *. b`

, where`n`

is the quotient`a /. b`

rounded towards zero to an integer.

`val frexp : float -> float * int`

`frexp f`

returns the pair of the significant and the exponent of`f`

. When`f`

is zero, the significant`x`

and the exponent`n`

of`f`

are equal to zero. When`f`

is non-zero, they are defined by`f = x *. 2 ** n`

and`0.5 <= x < 1.0`

.

`val float : int -> float`

Same as

`Pervasives.float_of_int`

.

`val truncate : float -> int`

Same as

`Pervasives.int_of_float`

.

`val int_of_float : float -> int`

Truncate the given floating-point number to an integer. The result is unspecified if the argument is

`nan`

or falls outside the range of representable integers.

`val nan : float`

A special floating-point value denoting the result of an undefined operation such as

`0.0 /. 0.0`

. Stands for 'not a number'. Any floating-point operation with`nan`

as argument returns`nan`

as result. As for floating-point comparisons,`=`

,`<`

,`<=`

,`>`

and`>=`

return`false`

and`<>`

returns`true`

if one or both of their arguments is`nan`

.

`val epsilon_float : float`

The difference between

`1.0`

and the smallest exactly representable floating-point number greater than`1.0`

.

`type fpclass`

`= Pervasives.fpclass`

`=`

The five classes of floating-point numbers, as determined by the

`Pervasives.classify_float`

function.

`val classify_float : float -> fpclass`

Return the class of the given floating-point number: normal, subnormal, zero, infinite, or not a number.

`val (^) : string -> string -> string`

String concatenation. Right-associative operator at precedence level 5/11.

`val char_of_int : int -> char`

Return the character with the given ASCII code. Raise

`Invalid_argument "char_of_int"`

if the argument is outside the range 0--255.

`val ignore : 'a -> unit`

Discard the value of its argument and return

`()`

. For instance,`ignore(f x)`

discards the result of the side-effecting function`f`

. It is equivalent to`f x; ()`

, except that the latter may generate a compiler warning; writing`ignore(f x)`

instead avoids the warning.

`val string_of_bool : bool -> string`

Return the string representation of a boolean. As the returned values may be shared, the user should not modify them directly.

`val bool_of_string : string -> bool`

Convert the given string to a boolean. Raise

`Invalid_argument "bool_of_string"`

if the string is not`"true"`

or`"false"`

.

`val bool_of_string_opt : string -> bool option`

Convert the given string to a boolean. Return

`None`

if the string is not`"true"`

or`"false"`

.- since
- 4.05

`val int_of_string : string -> int`

Convert the given string to an integer. The string is read in decimal (by default, or if the string begins with

`0u`

), in hexadecimal (if it begins with`0x`

or`0X`

), in octal (if it begins with`0o`

or`0O`

), or in binary (if it begins with`0b`

or`0B`

).The

`0u`

prefix reads the input as an unsigned integer in the range`[0, 2*max_int+1]`

. If the input exceeds`max_int`

it is converted to the signed integer`min_int + input - max_int - 1`

.The

`_`

(underscore) character can appear anywhere in the string and is ignored. Raise`Failure "int_of_string"`

if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type`int`

.

`val int_of_string_opt : string -> int option`

Same as

`int_of_string`

, but returns`None`

instead of raising.- since
- 4.05

`val float_of_string : string -> float`

Convert the given string to a float. The string is read in decimal (by default) or in hexadecimal (marked by

`0x`

or`0X`

). The format of decimal floating-point numbers is`[-] dd.ddd (e|E) [+|-] dd`

, where`d`

stands for a decimal digit. The format of hexadecimal floating-point numbers is`[-] 0(x|X) hh.hhh (p|P) [+|-] dd`

, where`h`

stands for an hexadecimal digit and`d`

for a decimal digit. In both cases, at least one of the integer and fractional parts must be given; the exponent part is optional. The`_`

(underscore) character can appear anywhere in the string and is ignored. Depending on the execution platforms, other representations of floating-point numbers can be accepted, but should not be relied upon. Raise`Failure "float_of_string"`

if the given string is not a valid representation of a float.

`val float_of_string_opt : string -> float option`

Same as

`float_of_string`

, but returns`None`

instead of raising.- since
- 4.05

`val (@) : 'a list -> 'a list -> 'a list`

List concatenation. Not tail-recursive (length of the first argument). Right-associative operator at precedence level 5/11.

`type in_channel`

`= Pervasives.in_channel`

The type of input channel.

`type out_channel`

`= Pervasives.out_channel`

The type of output channel.

`val stdin : in_channel`

The standard input for the process.

`val stdout : out_channel`

The standard output for the process.

`val stderr : out_channel`

The standard error output for the process.

`val print_endline : string -> unit`

Print a string, followed by a newline character, on standard output and flush standard output.

`val print_newline : unit -> unit`

Print a newline character on standard output, and flush standard output. This can be used to simulate line buffering of standard output.

`val prerr_endline : string -> unit`

Print a string, followed by a newline character on standard error and flush standard error.

`val prerr_newline : unit -> unit`

Print a newline character on standard error, and flush standard error.

`val read_line : unit -> string`

Flush standard output, then read characters from standard input until a newline character is encountered. Return the string of all characters read, without the newline character at the end.

`val read_int : unit -> int`

Flush standard output, then read one line from standard input and convert it to an integer. Raise

`Failure "int_of_string"`

if the line read is not a valid representation of an integer.

`val read_int_opt : unit -> int option`

Same as

`read_int_opt`

, but returns`None`

instead of raising.- since
- 4.05

`val read_float : unit -> float`

Flush standard output, then read one line from standard input and convert it to a floating-point number. The result is unspecified if the line read is not a valid representation of a floating-point number.

`val read_float_opt : unit -> float option`

Flush standard output, then read one line from standard input and convert it to a floating-point number. Returns

`None`

if the line read is not a valid representation of a floating-point number.- since
- 4.05.0

`type open_flag`

`= Pervasives.open_flag`

`=`

Opening modes for

`Pervasives.open_out_gen`

and`Pervasives.open_in_gen`

.

`val open_out : string -> out_channel`

Open the named file for writing, and return a new output channel on that file, positioned at the beginning of the file. The file is truncated to zero length if it already exists. It is created if it does not already exists.

`val open_out_bin : string -> out_channel`

Same as

`Pervasives.open_out`

, but the file is opened in binary mode, so that no translation takes place during writes. On operating systems that do not distinguish between text mode and binary mode, this function behaves like`Pervasives.open_out`

.

`val open_out_gen : open_flag list -> int -> string -> out_channel`

`open_out_gen mode perm filename`

opens the named file for writing, as described above. The extra argument`mode`

specifies the opening mode. The extra argument`perm`

specifies the file permissions, in case the file must be created.`Pervasives.open_out`

and`Pervasives.open_out_bin`

are special cases of this function.

`val flush : out_channel -> unit`

Flush the buffer associated with the given output channel, performing all pending writes on that channel. Interactive programs must be careful about flushing standard output and standard error at the right time.

`val output_char : out_channel -> char -> unit`

Write the character on the given output channel.

`val output_string : out_channel -> string -> unit`

Write the string on the given output channel.

`val output_bytes : out_channel -> bytes -> unit`

Write the byte sequence on the given output channel.

- since
- 4.02.0

`val output : out_channel -> bytes -> int -> int -> unit`

`output oc buf pos len`

writes`len`

characters from byte sequence`buf`

, starting at offset`pos`

, to the given output channel`oc`

. Raise`Invalid_argument "output"`

if`pos`

and`len`

do not designate a valid range of`buf`

.

`val output_substring : out_channel -> string -> int -> int -> unit`

Same as

`output`

but take a string as argument instead of a byte sequence.- since
- 4.02.0

`val output_byte : out_channel -> int -> unit`

Write one 8-bit integer (as the single character with that code) on the given output channel. The given integer is taken modulo 256.

`val output_binary_int : out_channel -> int -> unit`

Write one integer in binary format (4 bytes, big-endian) on the given output channel. The given integer is taken modulo 2

^{32}. The only reliable way to read it back is through the`Pervasives.input_binary_int`

function. The format is compatible across all machines for a given version of OCaml.

`val output_value : out_channel -> 'a -> unit`

Write the representation of a structured value of any type to a channel. Circularities and sharing inside the value are detected and preserved. The object can be read back, by the function

`Pervasives.input_value`

. See the description of module`Marshal`

for more information.`Pervasives.output_value`

is equivalent to`Marshal.to_channel`

with an empty list of flags.

`val seek_out : out_channel -> int -> unit`

`seek_out chan pos`

sets the current writing position to`pos`

for channel`chan`

. This works only for regular files. On files of other kinds (such as terminals, pipes and sockets), the behavior is unspecified.

`val pos_out : out_channel -> int`

Return the current writing position for the given channel. Does not work on channels opened with the

`Open_append`

flag (returns unspecified results).

`val out_channel_length : out_channel -> int`

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless.

`val close_out : out_channel -> unit`

Close the given channel, flushing all buffered write operations. Output functions raise a

`Sys_error`

exception when they are applied to a closed output channel, except`close_out`

and`flush`

, which do nothing when applied to an already closed channel. Note that`close_out`

may raise`Sys_error`

if the operating system signals an error when flushing or closing.

`val close_out_noerr : out_channel -> unit`

Same as

`close_out`

, but ignore all errors.

`val set_binary_mode_out : out_channel -> bool -> unit`

`set_binary_mode_out oc true`

sets the channel`oc`

to binary mode: no translations take place during output.`set_binary_mode_out oc false`

sets the channel`oc`

to text mode: depending on the operating system, some translations may take place during output. For instance, under Windows, end-of-lines will be translated from`\n`

to`\r\n`

. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

`val open_in : string -> in_channel`

Open the named file for reading, and return a new input channel on that file, positioned at the beginning of the file.

`val open_in_bin : string -> in_channel`

Same as

`Pervasives.open_in`

, but the file is opened in binary mode, so that no translation takes place during reads. On operating systems that do not distinguish between text mode and binary mode, this function behaves like`Pervasives.open_in`

.

`val open_in_gen : open_flag list -> int -> string -> in_channel`

`open_in_gen mode perm filename`

opens the named file for reading, as described above. The extra arguments`mode`

and`perm`

specify the opening mode and file permissions.`Pervasives.open_in`

and`Pervasives.open_in_bin`

are special cases of this function.

`val input_char : in_channel -> char`

Read one character from the given input channel. Raise

`End_of_file`

if there are no more characters to read.

`val input_line : in_channel -> string`

Read characters from the given input channel, until a newline character is encountered. Return the string of all characters read, without the newline character at the end. Raise

`End_of_file`

if the end of the file is reached at the beginning of line.

`val input : in_channel -> bytes -> int -> int -> int`

`input ic buf pos len`

reads up to`len`

characters from the given channel`ic`

, storing them in byte sequence`buf`

, starting at character number`pos`

. It returns the actual number of characters read, between 0 and`len`

(inclusive). A return value of 0 means that the end of file was reached. A return value between 0 and`len`

exclusive means that not all requested`len`

characters were read, either because no more characters were available at that time, or because the implementation found it convenient to do a partial read;`input`

must be called again to read the remaining characters, if desired. (See also`Pervasives.really_input`

for reading exactly`len`

characters.) Exception`Invalid_argument "input"`

is raised if`pos`

and`len`

do not designate a valid range of`buf`

.

`val really_input : in_channel -> bytes -> int -> int -> unit`

`really_input ic buf pos len`

reads`len`

characters from channel`ic`

, storing them in byte sequence`buf`

, starting at character number`pos`

. Raise`End_of_file`

if the end of file is reached before`len`

characters have been read. Raise`Invalid_argument "really_input"`

if`pos`

and`len`

do not designate a valid range of`buf`

.

`val really_input_string : in_channel -> int -> string`

`really_input_string ic len`

reads`len`

characters from channel`ic`

and returns them in a new string. Raise`End_of_file`

if the end of file is reached before`len`

characters have been read.- since
- 4.02.0

`val input_byte : in_channel -> int`

Same as

`Pervasives.input_char`

, but return the 8-bit integer representing the character. Raise`End_of_file`

if an end of file was reached.

`val input_binary_int : in_channel -> int`

Read an integer encoded in binary format (4 bytes, big-endian) from the given input channel. See

`Pervasives.output_binary_int`

. Raise`End_of_file`

if an end of file was reached while reading the integer.

`val input_value : in_channel -> 'a`

Read the representation of a structured value, as produced by

`Pervasives.output_value`

, and return the corresponding value. This function is identical to`Marshal.from_channel`

; see the description of module`Marshal`

for more information, in particular concerning the lack of type safety.

`val seek_in : in_channel -> int -> unit`

`seek_in chan pos`

sets the current reading position to`pos`

for channel`chan`

. This works only for regular files. On files of other kinds, the behavior is unspecified.

`val pos_in : in_channel -> int`

Return the current reading position for the given channel.

`val in_channel_length : in_channel -> int`

Return the size (number of characters) of the regular file on which the given channel is opened. If the channel is opened on a file that is not a regular file, the result is meaningless. The returned size does not take into account the end-of-line translations that can be performed when reading from a channel opened in text mode.

`val close_in : in_channel -> unit`

Close the given channel. Input functions raise a

`Sys_error`

exception when they are applied to a closed input channel, except`close_in`

, which does nothing when applied to an already closed channel.

`val close_in_noerr : in_channel -> unit`

Same as

`close_in`

, but ignore all errors.

`val set_binary_mode_in : in_channel -> bool -> unit`

`set_binary_mode_in ic true`

sets the channel`ic`

to binary mode: no translations take place during input.`set_binary_mode_out ic false`

sets the channel`ic`

to text mode: depending on the operating system, some translations may take place during input. For instance, under Windows, end-of-lines will be translated from`\r\n`

to`\n`

. This function has no effect under operating systems that do not distinguish between text mode and binary mode.

`module LargeFile = Pervasives.LargeFile`

Operations on large files. This sub-module provides 64-bit variants of the channel functions that manipulate file positions and file sizes. By representing positions and sizes by 64-bit integers (type

`int64`

) instead of regular integers (type`int`

), these alternate functions allow operating on files whose sizes are greater than`max_int`

.

`type 'a ref`

`= 'a Pervasives.ref`

`=`

`{`

`mutable contents : 'a;`

`}`

The type of references (mutable indirection cells) containing a value of type

`'a`

.

`val ref : 'a -> 'a ref`

Return a fresh reference containing the given value.

`val (!) : 'a ref -> 'a`

`!r`

returns the current contents of reference`r`

. Equivalent to`fun r -> r.contents`

. Unary operator at precedence level 11/11.

`val (:=) : 'a ref -> 'a -> unit`

`r := a`

stores the value of`a`

in reference`r`

. Equivalent to`fun r v -> r.contents <- v`

. Right-associative operator at precedence level 1/11.

`val incr : int ref -> unit`

Increment the integer contained in the given reference. Equivalent to

`fun r -> r := succ !r`

.

`val decr : int ref -> unit`

Decrement the integer contained in the given reference. Equivalent to

`fun r -> r := pred !r`

.

`type ('a, 'b) result`

`= ('a, 'b) Pervasives.result`

`=`

`|`

`Ok of 'a`

`|`

`Error of 'b`

- since
- 4.03.0

`type ('a, 'b, 'c, 'd, 'e, 'f) format6`

`= ('a, 'b, 'c, 'd, 'e, 'f) CamlinternalFormatBasics.format6`

`type ('a, 'b, 'c, 'd) format4`

`= ('a, 'b, 'c, 'c, 'c, 'd) format6`

`type ('a, 'b, 'c) format`

`= ('a, 'b, 'c, 'c) format4`

`val string_of_format : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> string`

Converts a format string into a string.

`val format_of_string : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('a, 'b, 'c, 'd, 'e, 'f) format6`

`format_of_string s`

returns a format string read from the string literal`s`

. Note:`format_of_string`

can not convert a string argument that is not a literal. If you need this functionality, use the more general`Scanf.format_from_string`

function.

`val (^^) : ('a, 'b, 'c, 'd, 'e, 'f) format6 -> ('f, 'b, 'c, 'e, 'g, 'h) format6 -> ('a, 'b, 'c, 'd, 'g, 'h) format6`

`f1 ^^ f2`

catenates format strings`f1`

and`f2`

. The result is a format string that behaves as the concatenation of format strings`f1`

and`f2`

: in case of formatted output, it accepts arguments from`f1`

, then arguments from`f2`

; in case of formatted input, it returns results from`f1`

, then results from`f2`

. Right-associative operator at precedence level 5/11.

`val exit : int -> 'a`

Terminate the process, returning the given status code to the operating system: usually 0 to indicate no errors, and a small positive integer to indicate failure. All open output channels are flushed with

`flush_all`

. An implicit`exit 0`

is performed each time a program terminates normally. An implicit`exit 2`

is performed if the program terminates early because of an uncaught exception.

`val at_exit : (unit -> unit) -> unit`

Register the given function to be called at program termination time. The functions registered with

`at_exit`

will be called when the program does any of the following:- executes
`Pervasives.exit`

- terminates, either normally or because of an uncaught exception
- executes the C function
`caml_shutdown`

. The functions are called in 'last in, first out' order: the function most recently added with`at_exit`

is called first.

- executes

`val valid_float_lexem : string -> string`

`val unsafe_really_input : in_channel -> bytes -> int -> int -> unit`

`val do_at_exit : unit -> unit`

`module Arg : sig ... end`

`module Array : sig ... end`

`module ArrayLabels : sig ... end`

`module Bigarray : sig ... end`

`module Buffer : sig ... end`

`module Bytes : sig ... end`

`module BytesLabels : sig ... end`

`module Callback : sig ... end`

`module Char : sig ... end`

`module Complex : sig ... end`

`module Digest : sig ... end`

`module Ephemeron : sig ... end`

`module Filename : sig ... end`

`module Float : sig ... end`

`module Format : sig ... end`

`module Gc : sig ... end`

`module Genlex : sig ... end`

`module Hashtbl : sig ... end`

`module Int32 : sig ... end`

`module Int64 : sig ... end`

`module Lazy : sig ... end`

`module Lexing : sig ... end`

`module List : sig ... end`

`module ListLabels : sig ... end`

`module Map : sig ... end`

`module Marshal : sig ... end`

`module MoreLabels : sig ... end`

`module Nativeint : sig ... end`

`module Obj : sig ... end`

`module Oo : sig ... end`

`module Parsing : sig ... end`

`module Printexc : sig ... end`

`module Printf : sig ... end`

`module Queue : sig ... end`

`module Random : sig ... end`

`module Scanf : sig ... end`

`module Seq : sig ... end`

`module Set : sig ... end`

`module Sort : sig ... end`

`module Spacetime : sig ... end`

`module Stack : sig ... end`

`module StdLabels : sig ... end`

`module Stream : sig ... end`

`module String : sig ... end`

`module StringLabels : sig ... end`

`module Sys : sig ... end`

`module Uchar : sig ... end`

`module Weak : sig ... end`